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Abstract

The purpose of this paper is to study the relationship
between measures of dissimilarity between shapes in Eu-
clidean space. We first concentrate on the pair Gromov-
Hausdorff distance (GH) versus Hausdorff distance un-
der the action of Euclidean isometries (EH). Then, we
(1) show they are comparable in a precise sense that is
not the linear behaviour one would expect and (2) ex-
plain the source of this phenomenon via explicit con-
structions. Finally, (3) by conveniently modifying the
expression for the GH distance, we recover the EH dis-
tance. This allows us to uncover a connection that links
the problem of computing GH and EH and the family of
Euclidean Distance Matrix completion problems. The
second pair of dissimilarity notions we study is the so
called Lp-Gromov-Hausdorff distance versus the Earth
Mover’s distance under the action of Euclidean isome-
tries. We obtain results about comparability in this situ-
ation as well.

1. Introduction
The problem of shape/object matching/comparison

appears in various disciplines. The problem has been
approached by several different techniques in the past
20 years. Recently in [18, 19], the use of the Gromov-
Hausdorff (referred to as GH from now on) distance (as
a measure of shape similarity) has been proposed as a
way of formalizing and providing new tools for tack-
ling the problem of shape matching under certain in-
variances. We refer the reader to [19] for an account.
One of the main features of the GH approach is that
shapes should be regarded as metric spaces where the
metric with which the shapes are endowed depends on
the type of invariance one wishes to consider. For exam-
ple, if one is interested in invariance to Euclidean isome-

tries, it is natural to endow shapes with the Euclidean
metric. However, if one is interested in invariance to
the so called bends (deformations of a surface that pre-
serve the geodesic metric) then one should augment
the shapes/surfaces with their Riemannian geodesic dis-
tance to thus form metric spaces. The similarity between
two shapes is therefore measured as a similarity between
the metric spaces one defines from the shapes.

The main purpose of this paper is to present and prove
some desirable theoretical properties of the GH distance
when the class of shapes one works with are subsets of
Euclidean space. Some of these properties give rise to
some new practical procedures based on these ideas.

Under the assumption that the metric spaces we want
to compare are Euclidean, we will be interested in prov-
ing the equivalence of the GH distance with the metric
obtained from the Hausdorff distance that takes quotient
with all Euclidean isometries (EH henceforth). Roughly,
the EH distance attempts to find the optimal Euclidean
isometry that aligns the two shapes (in Euclidean space)
under the Hausdorff distance.1 We prove important and
interesting results about this connection. Typically, the
EH is approximately implemented via the Iterative Clos-
est Point algorithm (ICP), [23, 21].

The main difference between the GH and EH dis-
tances lies in that while the former only looks at the
interpoint distance between points on each shape, with-
out any regard for the ambient space, the latter requires
finding a Euclidean isometry, meaning an isometry in
ambient space, that aligns the shapes. From this sim-
ple observation it is almost obvious that the EH distance
should furnish an upper bound for the GH distance. In
this paper we prove that this bound and a bound in the
opposite direction both hold.

Given the plethora of methods available for
shape/object matching, we believe that, in order to

1Precise definitions are given in §3.
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obtain a deep understanding of the problem of shape
matching and find possible avenues of improvement, it
is of extreme importance to discover and establish rela-
tions between these methods. Theoretical understanding
of these methods will lead to expressing conditions of
validity of each approach or family of approaches. This
can no doubt help in (a) guiding the choice of which
method to use in a given practical application, (b) telling
what parameters (if any) should be used for the partic-
ular chosen method, and (c) clearly determining what
are the guarantees of this particular method for the task
at hand. This paper is in the same vein as [17] and
tries to establish more connections between different ap-
proaches. This is an overview of our main results:

(A) We observe (this is well known in the metric ge-
ometry community) that, in general, the GH distance be-
tween two Euclidean metric spaces does not agree with
the EH distance. It is true, however, that for any pair
of Euclidean shapes,2 the GH distance is bounded above
by the EH distance:

GH ¤ EH.

(B) We prove that the EH distance admits (an increasing
function of) the GH distance as an upper bound, more
precisely that, for some constants c ¡ 0,

EH ¤ c � GH
1
2 .

This result is based on a Theorem by Alestalo et al., [2].
This, taken together with the previous item, proves that
the GH and EH distances are equivalent (or compara-
ble). We discuss how the exponent can be upgraded
to 1 by restricting us to a certain class of shapes. One
consequence of these bounds is that the numerical tech-
niques of [19, 7], which compute approximations to the
GH distance, could, in principle, also be used for tack-
ling the problem of matching shapes under invariance to
Euclidean isometries.

(C) We show how to obtain similar bounds for
the Lp-Gromov-Hausdorff (GHp) ([17]) and Euclidean
isometries invariant Wasserstein (or Earth Mover’s) dis-
tances (EWp), [9]. This type of bounds are sometimes
implicitely used in the proofs of correcteness of registra-
tion algorithms ([12] §4). We prove in this case that

GHp ¤ EWp ¤ c � GHp
1
4 .

As a byproduct, we obtain a quantitative statement
(Lemma 2) that supports the idea that the Lp-GH dis-
tances of [17] are well adapted for tackling the problem
of partial shape matching.

2By this we mean that the shapes are subsets of Euclidean space,
and are made into metric spaces by endowing them with the Eulidean
metric.

(D) By using one of the many equivalent expressions
for the GH distance, we identify a modification of this
expression that transforms the GH distance into the EH
distance, thus “closing the gap” between the two. This
formula we identify is therefore an equivalent expres-
sion for the EH distance. By doing this we uncover a re-
lationship between the EH distance and the so called Eu-
clidean Distance matrix completion problem (EDMCP),
[1, 3]. We also close the gap in the case of the Wasser-
stein type of distances. This allows us to propose a new
algorithmic idea based on a certain L2-GH distance in-
troduced in [17] that could potentially be useful for solv-
ing some Euclidean isometry problems.

We believe that the material in this paper will further
the understanding of the shape matching problem, by ex-
posing more links between the different approaches that
have been proposed in the community and by providing
new tools for analyzing these approaches.

Due to space constraints we do not present the proofs
of some of our results. These will be provided else-
where. The proof of Theorem 4 is, however, presented.
It contains some of the elements used for proving the
results whose proofs we omit.

2. The Gromov-Hausdorff distance
The features and advantages of using the GH distance

for shape matching have been discussed by [19], we re-
fer the reader to that publication for further details.

The main point the reader should keep in mind is that
shapes are regarded as metric spaces. We concentrate
on the main definitions needed for our exposition. A
good general reference for metric spaces, basic point set
topology and the GH distance is [8].

Now, we will introduce the Hausdorff distance, fol-
lowed by the original definition of the GH distance.
Other equivalent definitions of the GH distance that are
necessary for our argument will also be presented.

Definition 1 (Hausdorff distance). Let pZ, dq be a com-
pact metric space and A,B two closed subsets of Z.
One defines the Hausdorff distance between A and B
to be

dZHpA,Bq :� max

�
sup
aPA

inf
bPB

dpa, bq, sup
bPB

inf
aPA

dpa, bq


. (1)

Following [14], we introduce the Gromov-Hausdorff
distance between (compact) metric spaces X and Y :

dGHpX,Y q :� inf
Z,f,g

dZHpfpXq, gpY qq (2)

where f : X Ñ Z and g : Y Ñ Z are isometric embed-
dings (distance preserving) into the metric space pZ, dq.



This expression seems daunting from the computational
point of view. We will recall equivalent, tamer, expres-
sions below. The following diagram depicts the general
construction:

pX, dXq
f

��

ks dGH +3 pY, dY q
g

��
pfpXq, dq ks d

Z
H +3 pgpY q, dq

(3)

Despite its apparent complexity, as was already pointed
out in [19], expression (2) helps to cast the procedure of
[10] inside the Gromov-Hausdorff realm.

Definition 2 (Correspondence). For sets A and B, a
subset R � A�B is a correspondence (between A and
B) if and and only if
(1) @ a P A, there exists b P B s.t. pa, bq P R
(2) @ b P B, there exists a P X s.t. pa, bq P R.
Let RpA,Bq denote the set of all possible correspon-
dences between sets A and B.

Consider metric spaces pX, dXq and pY, dY q. Let Γ :
X � Y

�
X � Y Ñ R� be given by px, y, x1, y1q ÞÑ

|dXpx, x1q � dY py, y1q|. Then, the Gromov-Hausdorff
distance between X and Y can be rewritten as

dGHpX,Y q :� 1

2
inf

RPRpX,Y q
max

px, yq P R

px1, y1q P R

Γpx, y, x1, y1q. (4)

Definition 3 (Metric Coupling). From now on let
DpdX , dY q denote the set of all possible metrics on the
disjoint union of X and Y, X \ Y . Let d P DpdX , dY q.
This means that d, besides satisfying all triangle in-
equalities, it also satisfies that dpx, x1q � dXpx, x1q and
dpy, y1q � dY py, y1q for all x, x1 P X and y, y1 P Y .

Remark 1. One can equivalently (in the sense of equal-
ity) define the Gromov-Hausdorff distance between met-
ric spaces pX, dXq and pY, dY q as ([8] pp. 255)

dGHpX,Y q � inf
d

d
pX\Y,dq
H pX,Y q (5)

where the infimum is taken over d P DpdX , dY q. This
expression is central to our presentation.

Remark 2. It was pointed out in [16] that (4) can
be recast in a somewhat clearer form: For functions
φ : X Ñ Y and ψ : Y Ñ X consider the numbers
Apφq :� supx1,x2PX |dXpx1, x2q � dY pφpx1q, φpx2qq|,
Bpψq :� supy1,y2PY |dXpψpy1q, ψpy2qq � dY py1, y2q|
and Cpφ, ψq :� supxPX, yPY |dXpx, ψpyqq �
dY pφpxq, yq|, then

dGHpX,Y q � inf
φ : X Ñ Y
ψ : Y Ñ X

1

2
max pApφq, Bpψq, Cpφ, ψqq . (6)

This expression is the central idea behind the computa-
tional approaches of [19] and [7].

Below we state many well known properties of the
GH distance:

Proposition 1 ([8] Ch. 7 and [16]). LetX and Y be two
compact metric spaces. Then the following assertions
are true:

1. The following equalities hold: (2)�(4)�(5)�p6q.
2. The GH distance is a true metric on the set of

classes of isometric metric spaces.

3. If dGHpX,Y q   δ then there exist f : X Ñ Y
such that Apfq   2δ and fpXq is a 2δ-net of Y .

4. The GH distance is bounded: dGHpX,Y q ¤
1
2 max pdiam pXq ,diam pY qq.

Remark 3. Note that via (4) it is easy to see that
dGHpX, tpuq � diam pXq {2. In fact, if Y � tpu,
then dY py, y1q � 0 for all choices of y, y1 and hence
Γpx, y, x1, y1q � dXpx, x1q for all x, x1 P X and
y, y1 P Y . Note that RpX,Y q consists of a unique cor-
respondence R � tpx, pq|x P Xu. Then dGHpX,Y q �
1
2 maxx,x1 dXpx, x1q.

3. The case of Isometries in Euclidean Space
Let Epnq denote the Euclidean group of n-

dimensional Euclidean space.3 Consider the distance
between compact subsets X,Y of Rn given by:

dRn
H,isopX,Y q :� inf

TPEpnq
dRn
H pX,T pY qq. (7)

It is easy to check that:

Proposition 2. dRn
H,isop, q is a metric on the set of isom-

etry classes of compact subsets of Euclidean space Rn.

This notion of distance has received a lot of attention
by researchers. It is frequently approximated by using
the Iterative Closest Point technique (ICP).4 See for ex-
ample [13, 15, 23, 20] and references therein.

Assume for simplicity that X and Y are finite:
X � tx1, . . . , x`u and Y � ty1, . . . , ymu. It fol-
lows from the fact that GH is a metric on (the isom-
etry classes of) metric spaces (Proposition 1) that if
dGHppX, } � }q, pY, } � }q � 0 then there exists an iso-
metric transformation that maps X into Y . This simply

3Recall that its elements are all Euclidean isometries: translations,
rotations and reflections and linear combinations of these.

4ICP techniques actually deal with a certain L2 version of (7).



and merely means that (a) ` � m and (b) that there exist
a permutation π of t1, . . . ,mu s.t.

}xi � xj} � }yπi � yπj } (8)

for all i, j � 1, . . . ,m.
Via Lemma 1 below, this condition allows us to con-

struct an isometry T of the ambient space Rn such that
T pxiq � yπi for all i � 1, . . . ,m.

Notice that (8) gives information only about corre-
spondence between (finitely many) points of Rn and
yet, we are able to extrapolate the map given by π
into a full isometry of Rn into itself. The existence of
such Euclidean isometry immediately implies that, also,
dRn
H,isopX,Y q � 0.

Lemma 1 (Folklore Lemma, [5]). Let p1, . . . , pm and
q1, . . . , qm be points in Rn. If }pi � pj} � }qi � qj}
for every i, j � 1, . . . ,m, then there exists a Eu-
clidean isometry T such that T ppiq � qi, for every
i � 1, . . . ,m.

Corollary 1. If X and Y are compact subsets of Rn
such that when endowed with the Euclidean metric they
are isometric, then there exists an Euclidean isometry
T : Rn Ñ Rd such that T pXq � Y .

A natural question to ask is whether it is still true
that when all we know is that for some ε ¥ 0,
dGHppX, } � }q, pY, } � }q ¤ ε, then this implies the ex-
istence of a Euclidean isometry T : Rn Ñ Rn such that

dRn
H pX,T pY qq ¤ C � εt (9)

for some constant C and t ¡ 0. This leads to searching
for an upper bound for dRn

H,isop, q in terms of dGHp, q,
at least for a certain class of shapes. This is one of the
most important points in the paper. The fact that in the
case of Euclidean sets, just from the intrinsic similarity
information provided by dGHpX,Y q (i.e. no reference
to an ambient space), we are able to construct an ambient
space isometry T that renders X close to T pY q is non-
trivial. We delve into this important question next.

3.1. Relating dGHp, q with dRn
H,isop, q

We easily have:

Proposition 3. For all compact X,Y � Rn one has

dGHppX, } � }q, pY, } � }qq ¤ dRn
H,isopX,Y q.

As before, let X and Y denote compact sets of
Rd. The first question one must answer is whether
dGHppX, } � }q, pY, } � }qq � dRn

H,isopX,Y q in general.

This cannot be true, in general, as the following
simple counterexample shows: Let X � ta, b, cu
where a, b, c are the vertices of an equilateral triangle
of side lenght 1. Let Y � tpu. Then, it is clear
that dRn

H,isopX,Y q � ?
3{3 whereas, by Remark 3,

dGHpX,Y q � 1{2. The reason for this is well known,
the metric space Z into which the embedding is optimal
for the GH distance (according to expression (2) of GH)
can be thought of as a metric space with �8 curvature,5

see Figure 2. This can also be interpreted via expression
(5) of the GH distance by saying that the optimal metric
is not Euclidean. We see this in detail in §3.2.

This can be extended in the following way: For a nat-
ural number k   n considerX to be the pk�1q-simplex
∆k consisting of k points all at unit distance from ea-
chother, and Y � tpu. In this case, dRn

H,isopX,Y q equals
the circumradius of the simplex, which is known to be
dRn
H,isopX,Y q �

b
k

2pk�1q . But, still, dGHpX,Y q �
1{2. Thus, there can exist no constant C independent
of dimension s.t. dRn

H,isopX,Y q � C � dGHpX,Y q for all
n P N and Euclidean metric spaces X and Y in Rn.

Figure 1. Simplices ∆1, ∆2 and ∆3. Each of these have GH
distance 1{2 to the metric space composed of a single point.
In green, we show the location of the circumcenter. The EH
distances between each of the simplices to a single point are
1{2,

?
3{3 and

a
3{8, respectively.

Now we try to figure out what would be the maximal

K=0 K<0 K=-1

Figure 2. Embeddings of the simplex ∆2 into spaces of de-
creasing curvature. Left to right, curvatures are 0,   0 and
�8. The latter picture corresponds to a tree-like metric space.
In this case, the sides of the triangle branch off a central point
and the distance of each vertex to this point is 1

2
. Thus, the

optimal location of the embedding of tpu corresponds to this
branching point and hence the result dGHp∆2, tpuq � 1{2.

value that the exponent t in (9) can take. We adapt a
construction from [2]. We claim that for all ε P p0, 1

4 q
5The precise terminology for this is that this optimal embedding

space is 0-hyperbolic in the sense of Gromov, see [8].



there exists finite sets X,Y P R2 with

dGHpX,Y q ¤ ε and dHpX,SpY qq ¥
a
ε{2

for all Euclidean isometries S : R2 Ñ R2. Indeed,
let te1, e2u denote the canonical basis of R2. Let X �
tp0, 0q, e12 , e1u and Y � tp0, 0q, e12 �

?
2ε �e2u. Clearly,

2dGHpX,Y q ¤
b

1
4 � 2ε� 1

2 ¤ 2ε. See Figure 3 for the

construction. Let S be s.t. dR2

H pY, SpXqq � α. Note

Figure 3. Example that shows that t � 1 is not achievable in
general. The points of X are shown in green and the points
of Y are shown in red. The thick red line corresponds to the
image of the x-axis through the Eucliden isometry S. See the
text for details.

that the image through S of the x-axis, Sptλe1|λ P Ruq,
is a line, and that this line must intersect the three balls
Bpy, αq, y P Y . It follows that α ¥ aε{2, whence the
claim.

It is then clear from the reasoning above that, in gen-
eral, t � 1 is not achievable.

We prove in Theorem 1 below that for all compact
X,Y � Rn, and some constant cn, dRn

H,isopX,Y q ¤
cn pdGHpX,Y qq1{2 . To prove this, we resort to the fol-
lowing results of Alestalo et al., [2]. See also [11].

Definition 4. Let pX, dXq and pY, dY q be metric spaces.
For a map f : X Ñ Y , its distorsion is the number

distpfq :� sup
x,x1PX

|dXpx, x1q � dY pfpxq, fpx1qq|.

We say that f is an ε-nearisometry if distpfq ¤ ε.6

Theorem 1 ([2] Thm. 2.2). Suppose that X � Rn is
compact and that f : X Ñ Rn is an ε � diam pXq-
nearisometry with ε ¤ 1. Then there is a Euclidean
isometry T s.t. }f � T }L8pXq ¤ cn

?
ε � diam pXq ,

where cn depends only on n.

We then have the main result of this section:

Theorem 2. Let X,Y � Rn be compact. Then
dGHpX,Y q ¤ dRn

H,isopX,Y q ¤ c1n �M
1
2 � pdGHpX,Y qq

1
2

where M � maxpdiam pXq ,diam pY qq and c1n is a
constant that depends only on n.

6Note that we are not requiring that in addition fpXq be an ε-net
of Y .

Remark 4. We can obtain an exponent t � 1 by re-
stricting the analysis to the class of compact subsets of
Rn that are suficiently thick, in the sense of [2], details
will be provided elsewhere.

We have therefore proved that when we restrict our-
selves to subsets of Rn endowed with the Euclidean met-
ric, the Gromov-Hausdorff distance and the Euclidean
isometries invariant Hausdorff distance are comparable
or equivalent. In the next section we see that the gap be-
tween these two dissimilarity measures can be closed by
modifying expression (5) of the GH distance in a con-
venient way. This modification will reveal a connec-
tion between computing this new GH distance and the
EDMCP.

3.2. Closing the gap

We saw in §3.1 that the reason why dGHp∆2, tpuq �
1
2 instead of

?
3{3 � dRn

H,isop∆2, tpuq is that the met-
ric d P DpdX , dY q minimizing (5) is not Euclidean, but
corresponds to embedding both ∆2 and tpu into a space
with constant curvature tending to �8.

In this section we change equation (5) and force the
minimization to be performed over “Euclidean” metrics
only. We give the precise statements and definitions be-
low.

Definition 5 (Euclidean metrics, [4] §38). Let pZ, dq be
a compact metric space. The metric d is Euclidean if and
only if there exists n P N s.t. pZ, dq can be isometrically
embedded into Rn.7

We also say that a metric space is Euclidean when its
metric is Euclidean.

When Z is finite, there are simple ways of checking
whether a given metric is Euclidean. Below we recall
one such characterization that will be useful for our pre-
sentation. Let Z � tz1, . . . , z`u and Dp2q be the matrix
with elements d2pzi, zjq. Let 1` � p1, 1, . . . , 1qT P R`
and I` be the `� ` identity matrix. Let Q` � I` � 1

`1`.
Consider the map τ` : R`�` Ñ R`�` given by A ÞÑ
� 1

2Q`AQ`.

Proposition 4 ([4] §43). A necessary and sufficient con-
dition that a semi-metric space pZ, dq, #Z � `, be iso-
metrically embeddable in some Rr (r P N) is that the
matrix τ`pDp2qq be positive semidefinite (PSD).

In the case of a finite Euclidean metric space pZ, dq,
Z � tz1, . . . , z`u, one says that the matrix ppdpzi, zjqqq
is a Euclidean distance matrix (EDM).

7Informally, this means that the metric can be realized by a set of
points in some Euclidean space.



Definition 6 (Euclidean Metric Couplings, cf. Defini-
tion 3). For Euclidean X,Y P Rn let DEpdX , dY q de-
note the set of metrics d on X \ Y such that dpx, x1q �
}x�x1}, dpy, y1q � }y�y1} for x, x1 P X and y, y1 P Y ,
and d is Euclidean.

Remark 5. Clearly, for Euclidean X,Y ,
DEpdX , dY q � H. Also, notice that if pX, dXq and
pY, dY q are Euclidean, thenDEpdX , dY q � DpdX , dY q.

We now proceed to modify the GH distance in order
to obtain a related notion of dissimilarity better adapted
to Euclidean metric spaces. We propose a modification
of (5): Let X and Y be compact subsets of Rn endowed
with the Euclidean metric. Consider the following ten-
tative distance (cf. (5)):

dEGHpX,Y q :� inf
dPDEpX,Y q

d
pX\Y,dq
H pX,Y q (10)

Remark 6. Notice that solving for the optimal d above
can be regarded as an EDMCP, [1, 3]. This family of
optimization problems seeks to find an EDM which sat-
isfy certain optimality criteria. Typically, the input is a
partial EDM, i.e., a matrix with some missing entries,
and the goal is to find an EDM that preserves the entries
that are known and, for example, has minimal Frobe-
nius norm. Solutions to these family problems are usu-
aly found via Semidefinite Programming (SDP), [6]. In
the case of (10), if #X � ` and #Y � m, the goal is to
find a matrix D P R`�m with nonegative elements s.t.�

pp}xi � xj}qq D
DT pp}yi � yj}qq




is an EDM and JpDq :� maxpmaxi minj Dij ,maxj miniDijq
is minimized. In practice, that D be an EDM is enforced
via the condition given by Proposition 4.

Note that the map D ÞÑ JpDq is non-convex and
non-smooth what makes, solving this particular prob-
lem, even approximately, very difficult. In contrast, by
invoking the Lp Gromov-Hausdorff distances of [17]
one can provide more tractable alternatives, see §3.3 be-
low.

Remark 7. We haven’t yet proved that dEGHp, q is a dis-
tance, but this will follow from the Theorem below. Also,
notice that if pX, dXq and pY, dY q are Euclidean, by
Remark 5 and invoking expression (5), one sees that
dGHpX,Y q ¤ dEGHpX,Y q.

This is the core result of this section.

Theorem 3. For X,Y � Rn compact, dRn
H,isopX,Y q �

dEGHpX,Y q.
Corollary 2. dEGHp, q is a metric on the set of all isome-
try classes of compact subsets of Rn.

3.3. The case of Lp Gromov-Hausdorff distances

The same duality between dGHp, q and dRn
H,isop, q for

Euclidean metric spaces is also enjoyed by other no-
tions of distance between shapes (metric spaces) which
exhibit a less combinatorial nature. The counterpart
of dHp, q we are alluding to (which we referred to
as EWp before) is based on what is known in the
Shape/Image Comparison community as Earth Mover’s
distance (EMD), [22]. This distance is also known
as the Wasserstein-Kantorovich-Rubinstein distance and
we will denote it by dWp

, where p ¥ 1. We refer the
reader to [17] for a discussion of this connection. We
give a short account below. To simplify the presentation,
we assume that all metric spaces are finite. One assumes
that the sets to be compared are specified by probability
measures, that is, we are given both a subset of Rn (the
support of the measure) and a distribution of importance
or weights over this subset. This distance takes the fol-
lowing form in the case of weighted finite sets pX,µXq,
pY, µY q:8

dRn
Wp

pX,Y q :�
�

inf
µ

¸
ij

µij}xi � yj}p
�1{p

(11)

where µ ranges over the set of coupling measures
MpµX , µY q :� tµ P R#X�#Y |µij ¥ 0,

°
j µij �

µXi ,
°
i µij � µYj u . These objects can be regarded,

as a first approximation, as fuzzy correspondences, cf.
Definition 2. One can then define dRn

Wp,iso
pX,Y q in the

expected way as:

dRn
Wp,isopX,Y q :� inf

TPEpnq
dRn
Wp
pX,T pY qq.

Note the similarity of this expression with the ICP
objective function, [23].

Now, in this new framework, one must identify the
counterpart for dGHp, q, which we referred to as GHp
before. The new objects we are dealing with are metric
spaces that are also endowed with a weight (probability
measure), that is, triples pX, dX , µXq. The correct an-
swer is the distance introduced by K.L. Sturm [24, 17]
(cf. Definition 5):

SpppX, dX , µXq, pY, dY , µY qq :�
�

min
d,µ

¸
ij

µijd
p
ij

�1{p

(12)
where µ P MpµX , µY q and d P DpdX , dY q. When X
and Y are Euclidean, one can now define SEp pX,Y q by
minimizing over d P DE in (12). The main two results

8This means that µX is a collection of #X non-negative real num-
bers whose sum is 1.



we want to report are, basically, the respective versions
of Theorems 2 and 3.

Let M :� maxpdiam pXq ,diam pY qq. It is easy to
check that SppX,Y q ¤M for all p ¥ 1, [17].

The proof of Theorem 4 below relies on the following
key Lemma, of independent interest:9

Lemma 2. Assume X and Y are finite weighted metric
spaces with SpppX, dX , µXq, pY, dY , µY qq ¤ ε�M , and
ε ¤ 1. Then for all γ ¡ 0 and α, β ¥ 0 s.t. α � β � 1,
there exist Xε � X , Yε � Y , R P RpXε, Yεq and
µ P MpµX , µY q s.t. min

�
µXpXεq, µY pYεq, µpRq

� ¥
1� εpβ{γp and dGHpXε, Yεq ¤ γεα �M.

Remark 8. Note that the preceeding Lemma says that
if SppX,Y q is small, then one can find a part of X and
a part of Y which can be put in correspondence, and
s.t. their GH distance is also small. Moreover, these
parts have large total weight. Also, with small values of
p, the Sp distance tolerates large distorsions in areas of
small weight, whereas as p Ò 8, the behaviour is similar
to that of dGHp, q. This is exactly what is desired from
Partial Shape Matching techniques. A converse of this
Lemma also holds. Details will be presented elsewhere.

Theorem 4. Let X,Y � Rn be compact and p ¥ 1,
then
SppX,Y q ¤ dRn

Wp,iso
pX,Y q ¤M3{4 � c2n � pSppX,Y qq

1
4

where c2n is a constant only dependent on n.

Proof. We only prove the rightmost inequality. Let 1 ¥ ε �
SppX,Y q{M . Apply the preceding Lemma with α � β �
1{2 and γ � 1. Let Xε, Yε, R and µ be given by that Lemma.
Then, one has dGHpXε, Yεq ¤ ε1{2 �M .

By Proposition 1 item 3, this implies that there exist a map
φ : Xε Ñ Yε with distpφq ¤ 2ε1{2M and such that φpXεq is a
2ε1{2M net for Yε. By invoking Theorem 1 we get T P Epnq
s.t. maxxPXε }T pxq�φpxq} ¤ ε1{2 cn

?
2M.We will use the

inequality pa � bqp ¤ 2p�1pap � bpq (valid for all a, b ¥ 0)
in the proof without further mention.

Now, consider
°
xPX,yPY }T pxq � y}pµxy �

¸
px,yqPR

}T pxq � y}pµxyloooooooooooooomoooooooooooooon
pIq

�
¸

px,yqPRc

}T pxq � y}pµxyloooooooooooooomoooooooooooooon
pIIq

.

Note that pIIq can be bounded easily as follows: pIIq ¤
εp{2 2p Lp where L :� maxp}x}L8pXq, }y}L8pY qq. Note
that w.l.o.g. we can assume that the circumcenters ofX and Y
coincide with the origin of Rn, hence we have L ¤M .

9For simplicity, we assume X and Y to be finite, the results hold
however, without this restriction.

It takes a bit more work to bound pIq. We have: }T pxq �
y}p ¤ 2p�1 p}T pxq � φpxq}p � }φpxq � y}pq and hence

pIq
21�p

¤
¸

px,yqPR

}T pxq � φpxq}pµxyloooooooooooooooomoooooooooooooooon
pAq

�
¸

px,yqPR

}φpxq � y}pµxylooooooooooooomooooooooooooon
pBq

.

We bound pAq ¤ maxxPXε }T pxq � φpxq}p°px,yqPR µxy¤
εp{2 � cpnMp2p{2 since µpRq ¤ 1. And also, Similarly, we
bound pBq ¤ maxpx,yqPR }φpxq � y}p ¤ εp{2 � 2p{2Mp

where the last inequality follows from the fact that φpXεq is a
2ε1{2-net for Yε.

Now, after putting it all together and performing alge-
braic manipulations (using the fact that ε ¤ 1) we obtain°
xPX,yPY }T pxq � y}pµxy ¤ ε1{4 �M � 8 maxp1� cn{

?
2q.

This concludes the proof.
We also have (cf. Theorem 3):

Theorem 5. For X,Y � Rn compact and p ¥ 1,
SEp pX,Y q � dRn

Wp,iso
pX,Y q.

We will omit the proof of Theorem 5 since it is rather
technical. This theorem offers an interesting alternative
to computing dRn

Wp,iso
p, q.

Notice that in the statement of the condition for
checking that a given distance matrix is Euclidean
(Proposition 4) there appear only linear functions of
squared distances. Therefore, it is of special interest to
consider the possibility of computing

SE2 pX,Y q :�
�

min
d,µ

¸
x,y

d2px, yqµpx, yq
�1{2

(13)

where d P DEpdX , dY q and µ P MpµX , µY q. Obvi-
ously, for Euclidean X and Y , S2pX,Y q ¤ SE2 pX,Y q.
Remark 9. Note that the set of constraints for d in (13)
is substantially easier to deal with than in the general
setting (d P DpdX , dY q). Then, we observe that the op-
timization problem in (13) despite being of bilinear na-
ture, can be efficiently implemented by invoking Proposi-
tion 4. Indeed, assume #X � `, #Y � m and that µX

and µY are the uniform probability measures. Recall the
definition of Q`�m in the discussion after Definition 5.
The optimization problem one needs to solve in practice
is: min

°
ij PijUij where P,U P R`�m� , U1m � 1

`1`,
UT1` � 1

m1m and

�1
2
Q`�m

�
ppd2

Xqq P
PT ppd2

Y qq



Q`�m ¥ 0.10

This optimization problem can be attacked using alter-
nate projections method and the well known trick for

10For a matrix A, A ¥ 0 means that A is PSD.



projecting onto the space of PSD matrices (see [6]). De-
tails about our implementation will be presented else-
where.

4. Conclusions
We have established that the GH and EH distances

are comparable for Euclidean metric spaces. We also
established comparability in the context of the Lp-GH
distances, namely that GHp and EWp are comparable in
the class of Euclidean metric spaces. We have shown
how the EH distance can be recast as a constrained GH
distance by a certain modification of (5). This equiva-
lent expression for EH exposes the connection with the
family of EDMCPs. This translation can also be carried
out in the context of GHp distances. Using this connec-
tion, we design a new procedure for matching point sets
under Euclidean invariances. Some auxiliry results of
independent interest are presented along the way. We
believe that the results in this paper increase the un-
derstanding of the methods available for shape match-
ing/comparison.
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